Cardiac
catheterization is one of the most commonly performed procedures in
medical practice and has low overall complication rates. However,
numerous potential life- and limb-threatening complications are
possible.
The bleeding is typically from arterial puncture above the inguinal ligament or inadequate hemostasis after the procedure but may also occur spontaneously from the anticoagulation used for PCI. Diagnostic catheterizations in the past were typically performed after administration of variable amounts of heparin. In current practice, many of these diagnostic catheterizations are performed without administration of anticoagulant therapy. Anticoagulant therapy used during PCI varies depending on the operator and the clinical situation but can include high doses of unfractionated heparin, enoxaparin, the direct thrombin inhibitor bivalirudin (Angiomax), and platelet glycoprotein IIb/IIIa inhibitors (potent antiplatelet agents). The half-life of these agents varies from between 20 minutes to 12 hours or more. The major determinant of successful ultimate hemostasis is the quality of the initial puncture, which depends primarily on operator skill and experience. Typically, at the end of cardiac catheterization, the sheath in the femoral artery is removed, and hemostasis is achieved from one of several methods. Manual compression of the artery is the traditional method and is easy to perform, but it is associated with the longest period of bed rest, considerable patient discomfort, and a low but definite complication rate. Vascular closure devices (mechanical and biochemical devices that help “seal” the artery) were developed in an attempt to reduce bed rest time, improve patient comfort, and perhaps lower the complication rate associated with manual compression. However, their use may actually increase the risk of local vascular complications with diagnostic catheterization and PCI or the severity of such complications. These depend upon the specific device used and whether the procedure is a diagnostic catheterization or a PCI, as well as upon operator expertise. Closure devices may also increase the risk of local infection or endarteritis. Decisions regarding whether to use manual compression or a vascular closure device, as well as which vascular closure device, are complex and must weigh the location of the groin stick, patient body habitus, anticoagulants used, and local expertise with a particular closure device.
The bleeding is typically from arterial puncture above the inguinal ligament or inadequate hemostasis after the procedure but may also occur spontaneously from the anticoagulation used for PCI. Diagnostic catheterizations in the past were typically performed after administration of variable amounts of heparin. In current practice, many of these diagnostic catheterizations are performed without administration of anticoagulant therapy. Anticoagulant therapy used during PCI varies depending on the operator and the clinical situation but can include high doses of unfractionated heparin, enoxaparin, the direct thrombin inhibitor bivalirudin (Angiomax), and platelet glycoprotein IIb/IIIa inhibitors (potent antiplatelet agents). The half-life of these agents varies from between 20 minutes to 12 hours or more. The major determinant of successful ultimate hemostasis is the quality of the initial puncture, which depends primarily on operator skill and experience. Typically, at the end of cardiac catheterization, the sheath in the femoral artery is removed, and hemostasis is achieved from one of several methods. Manual compression of the artery is the traditional method and is easy to perform, but it is associated with the longest period of bed rest, considerable patient discomfort, and a low but definite complication rate. Vascular closure devices (mechanical and biochemical devices that help “seal” the artery) were developed in an attempt to reduce bed rest time, improve patient comfort, and perhaps lower the complication rate associated with manual compression. However, their use may actually increase the risk of local vascular complications with diagnostic catheterization and PCI or the severity of such complications. These depend upon the specific device used and whether the procedure is a diagnostic catheterization or a PCI, as well as upon operator expertise. Closure devices may also increase the risk of local infection or endarteritis. Decisions regarding whether to use manual compression or a vascular closure device, as well as which vascular closure device, are complex and must weigh the location of the groin stick, patient body habitus, anticoagulants used, and local expertise with a particular closure device.
No comments:
Post a Comment